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Topological Data Analysis

Data

Features Shape
Compute the topological features of 

the retrieved shape

Exploit the extracted features 
to describe, characterize,   

and discriminate data

Associate a topological 
structure to a dataset



Tools in TDA:

✦ Elementary Tools: 
✤ Euler Characteristic 
✤ Reeb Graph 
✤ Mapper

✦ Homology-Based Tools:
✤ Homology 
✤ Directed Homology 
✤ Persistent Homology 
✤ Zigzag Persistence 
✤ Multi-Parameter Persistent Homology 

✦ Other Tools: 
✤ Morse Theories

Topological Data Analysis



Morse Theories

✦ (Smooth) Morse Theory 

✦ Discrete Morse Theory 



Morse Theories

✦ (Smooth) Morse Theory 

✦ Discrete Morse Theory



Morse Theory [Milnor 1963, Matsumoto 2002] :

✦ Topological tool for efficiently analyzing a  

shape of a data by studying the behavior  

of a smooth scalar function f defined on it 

✦ Relates the critical points of a smooth 

scalar function on a shape with their 

regions of influence 

✦ Analysis of scalar fields requires extracting 

morphological features (e.g., critical 

points, integral lines and surfaces)

Morse Theory



Critical Points:

Morse Theory

Let f be a real-valued C2-function defined on a d-dimensional manifold M

✦ Critical point of f: 

any point on M in which the gradient of f vanishes 

✦ Critical points can be degenerate or non-degenerate 
✤ A critical point p is degenerate iff the determinant the Hessian matrix H of the 

second order derivatives of function f is null

non-degenerate 
critical point

degenerate 
critical point

degenerate 
critical point



Critical Points:

Morse Theory

Let f be a real-valued C2-function defined on a d-dimensional manifold M

✦ Critical point of f: 

any point on M in which the gradient of f vanishes 

✦ Critical points can be degenerate or non-degenerate 
✤ A critical point p is degenerate iff the determinant the Hessian matrix H of the 

second order derivatives of function f is null

Function f is a Morse function if and only if 
all its critical points are non-degenerate



Definitions:

Morse Theory

Gradient

Hessian 
Matrix



Critical Points:

Morse Theory

Let f be a real-valued C2-function defined on a d-dimensional manifold M

✦ Critical points of a Morse function are isolated 

✦ A d-dimensional Morse function f has d+1 types of critical points, called k-saddles  
(k is the index of the critical point) 

✤ For d=2, minima, saddles and maxima 

✤ For d=3, minima, 1-saddles, 2-saddles and maxima

Cri=cal points of a 
2D func=on



Fundamental Theorems:

Morse Theory

Suppose f is a smooth real-valued function on M, a < b, f -1[a, b] is compact,  
and there are no critical values between a and b. 

Then, Ma is diffeomorphic to Mb.

Theorem 1:

f



Fundamental Theorems:

Morse Theory

Suppose f is a smooth real-valued function on M and                                               
p is a non-degenerate  critical point of f of index k, and that f(p) = q.  

Suppose f -1[q − ε, q + ε] is compact and contains no critical points besides p.  

Then, Mq+ε is homotopy equivalent to Mq-ε with a k-cell attached.

Theorem 2:

f



Fundamental Theorems:

Morse Theory

ck ≥ !k(M) 

where ck is the number of critical points of index k

Morse Inequalities:

f



Integral Lines:

✦ An integral line of a smooth function f  

is a maximal path which is everywhere 

tangent to the gradient vector field of f 

✦ Integral lines start and end at the critical 

points of f 

✦ Integral lines that connect critical points 

of consecutive index are called 

separatrix lines

Morse Theory

Separatrix line

Maximum

SaddleMinimum

Integral line



Integral lines that converge to a critical point p of index i 

form an i-cell called the descending cell of p 

✦ Descending cell of a maximum: 2-cell 

✦ Descending cell of a saddle: 1-cell 

✦ Descending cell of a minimum: 0-cell

Morse Theory

Descending  

2-cell

Descending 

Morse Complex

Collection of the descending cells of      
all critical points of function f

Descending Morse Complex:



Integral lines that converge to a critical point p of index i 

form a (d-i)-cell called the ascending cell of p 

✦ Ascending cell of a minimum: 2-cell 

✦ Ascending cell of a saddle: 1-cell 

✦ Ascending cell of a maximum: 0-cell

Morse Theory

Ascending     

2-cell

Ascending   

Morse Complex

Collection of the ascending cells of        
all critical points of function f

Ascending Morse Complex:



Morse Smale Complex:

Morse Theory

Morse-Smale 

complex

✦ Function f is a Morse-Smale function if its 

ascending and descending Morse cells 

intersect transversally 

✦ Morse-Smale (MS) complex is the complex 

obtained from the mutual intersection of 

all the ascending and descending cells



Morse Smale Complex:

Morse Theory

✦ In a 2D Morse-Smale complex: 

✤ A 2-cell is a quadrilateral bounded by the sequence 

maximum – saddle – minimum – saddle 

✦ In a 3D Morse-Smale complex: 

✤ Each 1-saddle is connected to exactly two minima 

✤ Each 2-saddle is connected to exactly two maxima



Applications:

Morse Theory

✦ Shape Segmentation 
✤ Segmenting the boundary of a 3D shape 
✤ Volume data segmentation 

✤ Multi-resolution terrain analysis 

✤ Multi-resolution analysis of volume data 

✦ Homological Analysis 
✤ Homology computation 

✤ 3D and higher-dimensional shapes 

✤ Shapes discretized as simplicial complexes 

✤ Not only shapes defined by point data, but also networks

Study of caviWes and protrusions in an 

atomic density funcWon

Image from [Natarajan et al. 2006]



Applications:

Morse Theory

✦ Shape Segmentation 
✤ Segmenting the boundary of a 3D shape 
✤ Volume data segmentation 

✤ Multi-resolution terrain analysis 

✤ Multi-resolution analysis of volume data 

✦ Homological Analysis 
✤ Homology computation 

✤ 3D and higher-dimensional shapes 

✤ Shapes discretized as simplicial complexes 

✤ Not only shapes defined by point data, but also networks

Image from [Dong et al. 2006]

Quad mesh generaWon from a triangle mesh



Applications:

Morse Theory

✦ Shape Segmentation 
✤ Segmenting the boundary of a 3D shape 

✤ Volume data segmentation 
✤ Multi-resolution terrain analysis 

✤ Multi-resolution analysis of volume data 

✦ Homological Analysis 
✤ Homology computation 

✤ 3D and higher-dimensional shapes 

✤ Shapes discretized as simplicial complexes 

✤ Not only shapes defined by point data, but also networks

Burning cells tracked over Wme           

Morse complexes at different Wme step    

Image from [Bremer et al. 2010]



Applications:

Morse Theory

✦ Shape Segmentation 
✤ Segmenting the boundary of a 3D shape 

✤ Volume data segmentation 

✤ Multi-resolution terrain analysis 
✤ Multi-resolution analysis of volume data 

✦ Homological Analysis 
✤ Homology computation 

✤ 3D and higher-dimensional shapes 

✤ Shapes discretized as simplicial complexes 

✤ Not only shapes defined by point data, but also networks

Network of the criWcal points at             

two levels of resoluWon

Image from [Bremer et al. 2004]



Applications:

Morse Theory

✦ Shape Segmentation 
✤ Segmenting the boundary of a 3D shape 

✤ Volume data segmentation 

✤ Multi-resolution terrain analysis 

✤ Multi-resolution analysis of volume data 

✦ Homological Analysis 
✤ Homology computation 

✤ 3D and higher-dimensional shapes 

✤ Shapes discretized as simplicial complexes 

✤ Not only shapes defined by point data, but also networks

Network of the criWcal points on a volume 

data set at different resoluWon

Image from [Gyulassy et al. 2010]



Applications:

Morse Theory

✦ Shape Segmentation 
✤ Segmenting the boundary of a 3D shape 

✤ Volume data segmentation 

✤ Multi-resolution terrain analysis 

✤ Multi-resolution analysis of volume data 

✦ Homological Analysis 
✤ Homology computation 
✤ 3D and higher-dimensional shapes 
✤ Shapes discretized as simplicial complexes 
✤ Not only shapes defined by point data, but also networks
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Morse Theories

✦ (Smooth) Morse Theory 

✦ Discrete Morse Theory



Discretized Morse Theories:

Discrete Morse Theory

Various discretizations of Morse theory:

✦ Piecewise-Linear Morse Theory  [Banchoff ’67] 
✤ Originally for polyhedral surfaces 

✤ Defined for the 2D case and extended to 3D 

✦ Watershed Transform [Meyer ’94] 
✤ For images and labeled graphs 

✤ Dimension-independent 

✦ Discrete Morse Theory  [Forman ’98] 
✤ For cell complexes 

✤ Dimension-independent



Is a combinatorial counterpart  
of Morse Theory: 

✦ Introduced for cell complexes 

✦ Providing a compact homology-equivalent model for a shape 

✦ Representing a derivative-free tool for computing segmentations of shapes

Discrete Morse Theory:

Discrete Morse Theory



Discrete Morse Function:

Discrete Morse Theory

Let K be a simplicial complex 

f : K → ℝ is called discrete Morse func\on if, for every simplex σ, 

c+(σ) := # { τ ≻ σ| f(τ) ≤ f(σ) } ≤ 1 

c-(σ) :=# { ρ ≺ σ| f(ρ) ≥ f(σ) } ≤ 1



Discrete Morse Function:

Discrete Morse Theory

c+(σ) and c-(σ) cannot both be equal to 1

Proposition:

A k-simplex σ is critical with index k if  

#{ τ ≻ σ| f(τ) ≤ f(σ) } = #{ ρ ≺ σ| f(ρ) ≥ f(σ) } = 0

Critical Simplices:



Discrete Morse Theory

A discrete Morse function f induces a discrete vector field called the gradient vector field of f  

V := { (σ, τ) ∊ K x K | σ ≺ τ and f(σ) ≥ f(τ) } 

A collection V of pairs (σ,τ) ∊ K x K such that: 
✦ σ ≺ τ (i.e., incident simplices of dimension k and k+1) 
✦ Each simplex of K is in at most one pair of V

Discrete Vector Field:

Unpaired 
simplices

Cri\cal 
simplices



Discrete Morse Theory

A discrete vector field V is the gradient vector field of a discrete Morse function                
if and only if it is free of closed V-paths

Proposition:

A sequence of pairs of V  

(σ1,τ1), (σ2,τ2), … , (σr-1,τr-1), (σr,τr)  

such that: 
✦ σi+1 ≺ τi 

✦ σi+1 ≠ σi 

A V-path is closed if σ1 is a face of τr different from σr

V-Path: σ1

σ2

τ1

τ2



Discrete Morse Theory

Given a gradient vector field V defined on a simplicial complex K, the associated 

discrete Morse complex is homotopy equivalent to K                                           

Theorem:

Discrete Morse Complex:

A chain complex whose: 

✦ k-cells are in correspondence with critical 

simplices of index k 

✦ boundary relations are induced by V-paths



Fundamental Theorems:

Discrete Morse Theory

Suppose f is a smooth real-valued function on M, a < b, f -1[a, b] is compact, and there 

are no critical values between a and b. Then, Ma is diffeomorphic to Mb.

Smooth Theorem 1:

f

Suppose f is a discrete Morse function on M, a < b, and there are no critical values 

between a and b. Then, Ma is a deformation retract of Mb.

Discrete Theorem 1:



Fundamental Theorems:

Discrete Morse Theory

Suppose f is a smooth real-valued function on M and p is a non-degenerate  critical point of f 
of index k, and that f(p) = q. Suppose f -1[q − ε, q + ε] is compact and contains no critical points 

besides p. Then, Mq+ε is homotopy equivalent to Mq-ε with a k-cell attached.

Smooth Theorem 2:

f

Suppose f is a discrete Morse function on M, σ  is a critical k-simplex with f(σ)∈[a, b],           
and there are no other critical simplices with values in [a, b].                                                      

Then, Ma is homotopy equivalent to Mb with a k-cell attached.

Discrete Theorem 2:



Fundamental Theorems:

Discrete Morse Theory

ck ≥ !k(M) 

where ck is the number of critical points/simplices of index k

Smooth & Discrete Morse Inequalities:

f
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